Fundamental TechnologiesVoyager LECP Pages |
Record Format for FAT
This file is composed of 2800 byte records, sequential in time, with cadence equal to the stepping period of the LECP instrument. Each record consists has the following layout:
Bytes 1-200 |
Bytes 201-600 |
Bytes 601-800 |
Bytes 701-900 |
Bytes 901-2400 |
Bytes 2401-2800 |
KHED(100) |
R(100) |
IUNCS(100) |
NSAMP(100) |
IFILL(700) |
ISTP(100,2) |
Integer*2 |
Real*4 |
Integer*2 |
Integer*2 |
Integer*2 |
Integer*2 |
In the FORTRAN programs of the VGER processing, the FAT record can be represented by the following labeled COMMON block and Type Declarations for the variables:
COMMON/FOUT/KHED,R,IUNCS,NSAMP,IFILL,ISTP | |
INTEGER*2 KHED(100) | !OUTPUT RECORD HEADER |
INTEGER*2 IUNCS(100) | !OUTPUT RECORD UNCS (64*PERCENT) |
INTEGER*2 NSAMP(100) | !OUTPUT REC. #OF BASIC ACCUM. INTERVAL |
INTEGER*2 IFILL(700) | !SPACE IN COMMON BLOCK FOR THE FLUXES |
INTEGER*2 ISTP(100,2) | !STARTING AND ENDING MOTOR POSITIONS |
REAL*4 R(100) | !OUTPUT RECORD COUNT RATES.(C/SEC.) |
A list of contents of KHED(100) follows:
INDEX |
ITEM |
TYPE |
DESCRIPTION |
1 |
SCID |
I*2 |
LEFT
BYTE: SPACECRAFT ID. & /MODE IS S/C ID. 0=VGR 2, 1=VGR 1 |
2 |
DIR |
I*2 |
SCAN DIRECTION 1=INCR., -1=DECR. |
3 |
ST01 |
I*2 |
FIRST OCCURRENCE OF STATUS WORD 1 |
4 |
ST01 |
I*2 |
LAST OCCURRENCE OF STATUS WORD 1 |
5 |
ST02 |
I*2 |
FIRST OCCURRENCE OF STATUS WORD 2 |
6 |
ST02 |
I*2 |
LAST OCCURRENCE OF STATUS WORD 2 |
7 |
ST03 |
I*2 |
FIRST OCCURRENCE OF STATUS WORD 3 |
8 |
ST03 |
I*2 |
LAST OCCURRENCE OF STATUS WORD 3 |
9 |
ST04 |
I*2 |
FIRST OCCURRENCE OF STATUS WORD 4 |
10 |
ST04 |
I*2 |
LAST OCCURRENCE OF STATUS WORD 4 |
11 |
ST05 |
I*2 |
FIRST OCCURRENCE OF STATUS WORD 5 |
12 |
ST05 |
I*2 |
LAST OCCURRENCE OF STATUS WORD 5 |
13 |
ST06 |
I*2 |
FIRST OCCURRENCE OF STATUS WORD 6 |
14 |
ST06 |
I*2 |
LAST OCCURRENCE OF STATUS WORD 6 |
15 |
MPOS |
I*2 |
MOTOR POSITION(0,1,2,3,4,5,6,7) |
16 |
TTEMP |
I*2 |
TEL. TEMP, (128*CENT. DEG)(-9999 IF UNK.) |
17 |
LOGT |
I*2 |
LOG AMP. TEMP. (128* CENT.DEG.) |
18 |
TIMUNT |
I*2 |
BASIC ACCUM. TIME UNIT IN SECONDS FROM MRT |
19 |
NGRP |
I*2 |
NUMBER OF RATE GROUPS IN THIS FORMAT |
20 |
G18 |
I*2 |
GROUP 18 I.D./SC EVENT TIME FLAG |
21 |
ALTFLG |
I*2 |
FLAG FOR THE GS3 50-50 MODE 0=LEPT, 1=LEMPA |
22 |
DATE |
A*2 |
FIRST TWO CHARACTERS OF PRODUCTION DATE |
23 |
DATE |
A*2 |
PRODUCTION DATE (cont.) |
24 |
DATE |
A*2 |
PRODUCTION DATE (cont.) |
25 |
DATE |
A*2 |
PRODUCTION DATE (cont.) |
26 |
DATE |
A*2 |
PRODUCTION DATE (cont.) |
27 |
DATE |
A*2 |
PRODUCTION DATE (cont.) |
28 |
RATE |
I*2 |
STEPPING RATE, SECONDS. |
29 |
SPARE |
I*2 |
|
30 |
ADFL |
I*2 |
FLAG=1 FOR DEAD TIME CORR. APPLIED (ALPHA) |
31 |
BDFL |
I*2 |
FLAG=1 FOR DEAD TIME CORR. APPLIED (BETA) |
32 |
ADVR |
A*2 |
TWO CHARACTERS FOR DEAD TIME VERSION USED (ALPHA) |
33 |
BDVR |
A*2 |
TWO CHARACTERS FOR DEAD TIME VERSION USED (BETA) |
34 |
SPARE |
I*2 |
|
35 |
SECST |
I*2 |
16*AVG BEGIN TIME IN SECONDS |
36 |
SECSP |
I*2 |
16*AVG END TIME IN SECONDS |
37 |
M60F |
I*2 |
VALUE OF MOD 60 AT FIRST APPEARANCE |
38 |
M60L |
I*2 |
VALUE OF MOD 60 AT LAST APPEARANCE |
39 |
M16F |
I*2 |
VALUE OF MOD 2**16 AT FIRST APPEARANCE |
40 |
M16L |
I*2 |
VALUE OF MOD 2**16 AT LAST APPEARANCE |
41 |
SCETHS |
I*2 |
SPACECRAFT EVENT TIME HOUR AT START |
42 |
SCETHE |
I*2 |
SPACECRAFT EVENT TIME HOUR AT END |
43 |
SCETSS |
I*2 |
SPACECRAFT EVENT TIME SECOND AT START |
44 |
SCETSE |
I*2 |
SPACECRAFT EVENT TIME SECOND AT END |
45 |
SCETMS |
I*2 |
SPACECRAFT EVENT TIME MILLISECOND START |
46 |
SCETME |
I*2 |
SPACECRAFT EVENT TIME MILLISECOND END |
47 |
SCETYS |
I*2 |
SPACECRAFT EVENT TIME YEAR AT START |
48 |
SCETYE |
I*2 |
SPACECRAFT EVENT TIME YEAR AT END |
49 |
WYEAR |
I*2 |
AVG. WINDOW YEAR IF APPLICABLE. |
50 |
WDAY |
I*2 |
AVG. WINDOW DAY IF APPLICABLE. |
51 |
WHR |
I*2 |
AVG. WINDOW HOUR IF APPLICABLE. |
52 |
WSEC |
I*2 |
AVG. WINDOW SECONDS IF APPLICABLE. |
53 |
WINC |
I*2 |
100. AVG DURATION IN HOURS. |
54 |
SPARE |
I*2 |
|
55 |
SPARE |
I*2 |
|
56 |
SPARE |
I*2 |
|
57 |
SPARE |
I*2 |
|
58 |
SPARE |
I*2 |
|
59 |
SPARE |
I*2 |
|
60 |
S/C R |
I*2 |
JOVICENTRIC RADIAL DISTANCE IN UNITS OF 100*RJ |
61 |
S/C Lat |
I*2 |
JOVIMAGNETIC DIPOLE LATITUDE OF S/C IN 10*DEGREES |
62 |
S/C Long. |
I*2 |
JOVIMAGNETIC DIPOLE LONGITUDE OF S/C IN 10*DEGREES |
63 |
S/C SIII Long |
|
SYSTEM III LONG OF S/C IN 10*DEGREES |
64 |
IO SIII Long |
|
SYSTEM III LONG OF IO IN 10*DEGREES |
65 |
EU SIII Long |
|
SYSTEM III LONG OF EUROPA IN 10 * DEGREES |
66 |
NAME |
A*2 |
INPUT FILENAME |
67 |
NAME |
A*2 |
INPUT FILENAME (cont.) |
68 |
NAME |
A*2 |
INPUT FILENAME (cont.) |
69 |
NAME |
A*2 |
INPUT FILENAME (cont.) |
70 |
Bx |
|
MAGNETIC FIELD X COMPONENT IN UNITS OF 10*GAMMA |
71 |
By |
|
MAGNETIC FIELD Y COMPONENT IN UNITS OF 10*GAMMA |
72 |
Bz |
|
MAGNETIC FIELD Z COMPONENT IN UNITS OF 10*GAMMA |
|
|
|
IF BY=BZ=32767 THEN BX IS THE MAGNITUDE OF THE FIELD |
73 |
L |
|
MAGNETIC FIELD L VALUE OF THE SPACECRAFT |
74 |
SPARE |
|
|
75 |
SPARE |
|
|
76 |
SPARE |
|
|
77 |
SPARE |
|
|
78 |
SPARE |
|
|
79 |
SPARE |
|
|
80 |
PS 1 |
|
SECTOR 1 PL0 PITCH ANGLE IN UNITS OF 10*DEGREES |
81 |
PS 2 |
|
SECTOR 2 PL0 PITCH ANGLE IN UNITS OF 10*DEGREES |
82 |
PS 3 |
|
SECTOR 3 PL0 PITCH ANGLE IN UNITS OF 10*DEGREES |
83 |
PS 4 |
|
SECTOR 4 PL0 PITCH ANGLE IN UNITS OF 10*DEGREES |
84 |
PS 5 |
|
SECTOR 5 PL0 PITCH ANGLE IN UNITS OF 10*DEGREES |
85 |
PS 6 |
|
SECTOR 6 PL0 PITCH ANGLE IN UNITS OF 10*DEGREES |
86 |
PS 7 |
|
SECTOR 7 PL0 PITCH ANGLE IN UNITS OF 10*DEGREES |
87 |
PS 8 |
|
SECTOR 8 PL0 PITCH ANGLE IN UNITS OF 10*DEGREES |
88 |
PS 1 |
|
SECTOR 1 OF P DELTA' PITCH ANGLE IN UNITS OF 10 * DEGREES |
89 |
PS 2 |
|
SECTOR 2 OF P DELTA' PITCH ANGLE IN UNITS OF 10 * DEGREES |
90 |
PS 3 |
|
SECTOR 3 OF P DELTA' PITCH ANGLE IN UNITS OF 10 * DEGREES |
91 |
PS 4 |
|
SECTOR 4 OF P DELTA' PITCH ANGLE IN UNITS OF 10 * DEGREES |
92 |
PS 5 |
|
SECTOR 5 OF P DELTA' PITCH ANGLE IN UNITS OF 10 * DEGREES |
93 |
PS 6 |
|
SECTOR 6 OF P DELTA' PITCH ANGLE IN UNITS OF 10 * DEGREES |
94 |
PS 7 |
|
SECTOR 7 OF P DELTA' PITCH ANGLE IN UNITS OF 10 * DEGREES |
95 |
PS 8 |
|
SECTOR 8 OF P DELTA' PITCH ANGLE IN UNITS OF 10 * DEGREES |
96 |
NAME |
A*2 |
OUTPUT FILENAME |
97 |
NAME |
A*2 |
OUTPUT FILENAME (cont.) |
98 |
NAME |
A*2 |
OUTPUT FILENAME (cont.) |
99 |
NAME |
A*2 |
OUTPUT FILENAME (cont.) |
100 |
SPARE |
|
|
List of the contents of R(100):
Index |
Item |
Species (Main) |
Energy (MeV/Nucleon) (Nominal) |
Detector |
1 |
EB01 |
ELECTRON |
0.015 TO 0.037 |
BETA |
2 |
EBD1 |
ELECTRON |
0.015 TO 0.200 |
BETA PRIME |
3 |
EB02 |
ELECTRON |
0.037 TO 0.061 |
BETA |
4 |
EBD2 |
ELECTRON |
0.037 TO 0.200 |
BETA PRIME |
5 |
EB03 |
ELECTRON |
0.070 TO 0.112 |
BETA |
6 |
EBD3 |
ELECTRON |
0.070 TO 0.200 |
BETA PRIME |
7 |
EB04 |
ELECTRON |
0.130 TO 0.183 |
BETA |
8 |
EBD4 |
ELECTRON |
0.130 TO 0.200 |
BETA PRIME |
9 |
EB05 |
ELECTRON |
0.20 & UP |
BETA |
10 |
EBD5 |
ELECTRON |
0.20 & UP |
BETA PRIME |
11 |
EG06 |
ELECTRON |
0.20 & UP |
GAMMA |
12 |
EG07 |
ELECTRON |
0.40 & UP |
GAMMA |
13 |
EG08 |
ELECTRON |
0.70 & UP |
GAMMA |
14 |
EG09 |
ELECTRON |
1.50 & UP |
GAMMA |
15 |
44 |
ELECTRON |
0.35 TO 1.50 |
E4(E5A)(E3)(E2) |
16 |
45 |
ELECTRON |
2.5 & UP |
E4 E3A (E3C)(E5A)(E2) |
17 |
37 |
ELECTRON |
6.0 & UP |
E4 (E4A)E3C(E5A)(E2) |
18 |
PL01 |
Z.GE.1 |
0.030 TO 0.053 (Z=1) |
A1(A2) |
19 |
PL02 |
Z.GE.1 |
0.053 TO 0.085 (Z=1) |
A2(A3) |
20 |
PL03 |
Z.GE.1 |
0.085 TO 0.139 (Z=1) |
A3(A4) |
21 |
PL04 |
Z.GE.1 |
0.139 TO 0.200 (Z=1) |
A4(A5) |
22 |
PL05 |
Z.GE.1 |
0.200 TO 0.550 (Z=1) |
A5(A6) |
23 |
PL06 |
Z.GE.1 |
0.540 TO 1.05 (Z=1) |
A6(A7) |
24 |
PL07 |
Z.GE.1 |
1.05 TO 2.03 (Z=1) |
A7(A8) |
25 |
PL08 |
Z.GE.1 |
2.03 TO 4.01 (Z=1) |
A8(A9) |
26 |
32 |
PROTONS |
0.27 TO 0.70 |
E0 E2 (E3) |
27 |
1 |
PROTONS |
0.48 TO 1.40 |
E1 E2 (E3) (L12A) |
28 |
10 |
PROTONS |
4.10 TO 10.0 |
E2 E3 (E4) |
29 |
11 |
PROTONS |
10.0 TO 22.0 |
E2 E3 (E4) |
30 |
16 |
PROTONS |
3.0 TO 19.0 |
E5 E4 (E3) |
31 |
23 |
PROTONS |
19.0 TO 31.0 |
E5 E4 E3 (E2) |
32 |
27 |
PROTONS |
31.0 TO 150.0 |
E5 E4 E3 E2 |
33 |
31 |
PROTONS |
240.& UP |
E4 E3 |
34 |
39 |
ALPHAS |
0.075 TO 0.150 |
E0 (E2) |
35 |
33 |
ALPHAS |
0.150 TO 0.430 |
E0 E2 (E3) |
36 |
D1F1 |
ALPHAS |
0.150 TO 1.10 |
E1 |
37 |
3 |
ALPHAS |
0.39 TO 1.50 |
E1 E2 (E3) L12A (L12B) |
38 |
4 |
ALPHAS |
1.50 TO 3.70 |
E1 E2 (E3) L12A (L12B) |
39 |
12 |
ALPHAS |
4.20 TO 8.90 |
E2 E3 (E4) (L23A) |
40 |
13 |
ALPHAS |
8.90 TO 21.0 |
E2 E3 (E4) (L23A) |
41 |
17 |
ALPHAS |
3.0 TO 21.0 |
E5 E4 (E3) L54A (L54B) |
42 |
24 |
ALPHAS |
21.0 TO 31.0 |
E5 E4 E3 (E2) |
43 |
28 |
ALPHAS |
34.0 TO 64.0 |
E5 E4 E3 E2 |
44 |
AL01 |
ALPHAS |
0.98 TO 1.77 |
A9(A10) |
45 |
AL02 |
ALPHAS |
1.77 TO 4.22 |
A10 |
46 |
34 |
ALPHAS |
0.23 TO 0.44 |
E0 E2 (E3) |
47 |
5 |
L-NUCLEI |
0.60 TO 4.20 |
E1 E2 (E3) L12B (L12C) |
48 |
14 |
L-NUCLEI |
5.50 TO 33 |
E2 E3 (E4) L23A (L23B) |
49 |
18 |
L-NUCLEI |
4.0 TO 21 |
E5 E4 (E3) L54B (L54C) |
50 |
38 |
M-NUCLEI |
0.047 TO 0.125 |
E0 (E2) |
51 |
35 |
M-NUCLEI |
0.125 TO 0.260 |
E0 E2 (E3) |
52 |
D1F2 |
M-NUCLEI |
0.130 TO 10. |
E1 |
53 |
6 |
M-NUCLEI |
0.440 TO 2.90 |
E1 E2 (E3) |
54 |
7 |
M-NUCLEI |
2.90 TO 7.8 |
E1 E2 (E3) |
55 |
15 |
M-NUCLEI |
7.80 TO 40. |
E2 E3 (E4) L23B (L23C) |
56 |
19 |
M-NUCLEI |
6.30 TO 10.0 |
E5 E4 (E3) L54C (L54D) |
57 |
20 |
M-NUCLEI |
10.0 TO 42.0 |
E5 E4 (E3) L54C (L54D) |
58 |
25 |
M-NUCLEI |
42.0 TO 64.0 |
E5 E4 E3 (E2) |
59 |
29 |
M-NUCLEI |
64.0 TO 200. |
E5 E4 E3 E2 |
60 |
36 |
H-NUCLEI |
0.062 TO 0.105 |
E0 E2 (E3) |
61 |
8 |
H-NUCLEI |
0.250 TO 2.00 |
E1 E2 (E3) |
62 |
9 |
H-NUCLEI |
2.00 TO 13. |
E1 E2 (E3) |
63 |
43 |
H-NUCLEI |
13.0 TO 74.0 |
E2 E3 (E4) L23C |
64 |
21 |
H-NUCLEI |
8.60 TO 21.0 |
E5 E4 (E3) L54D |
65 |
22 |
H-NUCLEI |
21.0 TO 86.0 |
E5 E4 (E3) L54D |
66 |
26 |
H-NUCLEI |
86.0 TO 125. |
E5 E4 E3 (E2) |
67 |
30 |
H-NUCLEI |
125.0 & UP |
E5 E4 E3 E2 |
68 |
42 |
MISC. |
AR |
|
69 |
42 |
MISC. |
E0 |
|
70 |
42 |
MISC. |
E1 |
|
71 |
42 |
MISC. |
E2 |
|
72 |
42 |
MISC. |
E3 |
|
73 |
42 |
MISC. |
E4 |
|
74 |
42 |
MISC. |
E5 |
|
75 |
42 |
MISC. |
AL |
|
76 |
41 |
MISC. |
AL AR |
|
C |
NEAR ENCOUNTER ONLY DATA CHANNELS |
|||
77 |
ESA0 |
ELECTRONS |
2.5 & UP |
A SINGLES |
78 |
ESB0 |
ELECTRONS |
8.5 & UP |
B SINGLES |
79 |
AB10 |
ELECTRONS |
8.5 & UP |
A1 B0 COINC. |
80 |
DP09 |
IONS |
0.285 TO 5.02 |
DELTA ' |
81 |
DP10 |
IONS |
0.480 TO 2.58 |
DELTA ' |
82 |
DP11 |
IONS |
0.725 TO 1.64 |
DELTA ' |
83 |
PD09 |
IONS |
0.285 TO 5.25 |
DELTA |
84 |
PD10 |
IONS |
0.480 TO 2.72 |
DELTA |
85 |
PD11 |
IONS |
0.725 TO 1.72 |
DELTA |
86 |
AB12 |
IONS |
54.0 TO 87.3 |
A1 B2 COINC. |
87 |
AB13 |
IONS |
87.3 TO 152. |
A1 B3 COINC. |
88 |
PSA1 |
IONS |
15.8 TO 158. |
A1 SINGLES |
89 |
PSA2 |
IONS |
15.8 TO 49.0 |
A2 SINGLES |
90 |
PSA3 |
IONS |
16.3 TO 26.2 |
A3 SINGLES |
91 |
PSB1 |
IONS |
54.0 TO 174. |
B1 SINGLES |
92 |
PSB2 |
IONS |
54.0 TO 87.3 |
B2 SINGLES |
93 |
PSB3 |
IONS |
54.0 TO 59.0 |
B3 SINGLES |
94 |
DA03 |
IONS Z.GE.2 0 |
0.480 TO 2.45 |
DELTA ' |
95 |
DA04 |
IONS Z.GE.2 0 |
0.780 TO 1.41 |
DELTA ' |
96 |
DZ01 |
IONS Z.GE.2 0 |
0.405 TO 18.8 |
DELTA ' |
97 |
AD03 |
IONS Z.GE.2 0 |
0.480 TO 2.58 |
DELTA |
98 |
AD04 |
IONS Z.GE.2 0 |
0.780 TO 1.48 |
DELTA |
99 |
ZD01 |
IONS Z.GE.2 0 |
0.400 TO 19.8 |
DELTA |
100 |
SPARE |
|
|
|
101-200 | UNC. | 1-100 | UNITS OF 64*PERCENT | |
201-300 | NUMBER | 1-100 | UNITS OF BASIC ACCUM. TIME FOR MODE |
The array IFILL(700) reserves space for items calculated from the RATES(100) array using empirically derived expressions and coefficients that are loaded into labelled common blocks are the beginning of execution from the subroutine NEWBEG.FOR. In FORTRAN programs these items may be conveniently organized using the arrays IGAM(50), ICOMPR(30), IANGER(20), IUGAM(50), IUCOMP(50), IUANGR(20), IGFLX(100, ICFACT(100), FLUXES(100), IUFLUX(100) and ISTP(100,2). Note that ISTP(100,2) is prepared in the subroutine MTRCHECK_2001 and carries the information necessary to establish which a given channel might have directionally mixed data due to insufficiently rapid sampling compared to motor stepping.
COMMON/FOUT/IHED(100),RATES(100),IUNCS(100),NSAMP(100),IGAM(50), | |
1 | ICOMPR(30),IANGER(20),IUGAM(50),IUCOMP(30),IUANGR(20), |
2 | IGFLX(100),ICFACT(100),FLUXES(100),IUFLUX(100),ISTP(100,2) |
Offset |
Index |
Item |
Description |
Units |
301 |
1 |
EB01/EB02 |
Exponent in a power law fit (Eg) |
2048*g |
302 |
2 |
EB02/EB03 |
Exponent in a power law fit (Eg) |
2048*g |
303 |
3 |
EB03/EB04 |
Exponent in a power law fit (Eg) |
2048*g |
304 |
4 |
EB04/EB05 |
Exponent in a power law fit (Eg) |
2048*g |
305 |
5 |
EG06/EG07 |
Exponent in a power law fit (Eg) |
2048*g |
306 |
6 |
EG07/EG08 |
Exponent in a power law fit (Eg) |
2048*g |
307 |
7 |
EG08/EG09 |
Exponent in a power law fit (Eg) |
2048*g |
308 |
8 |
PL01/PL02 |
Exponent in a power law fit (Eg) |
2048*g |
309 |
9 |
PL02/PL03 |
Exponent in a power law fit (Eg) |
2048*g |
310 |
10 |
PL03/PL04 |
Exponent in a power law fit (Eg) |
2048*g |
311 |
11 |
PL04/PL05 |
Exponent in a power law fit (Eg) |
2048*g |
312 |
12 |
PL05/PL06 |
Exponent in a power law fit (Eg) |
2048*g |
313 |
13 |
PL06/PL07 |
Exponent in a power law fit (Eg) |
2048*g |
314 |
14 |
PL07/PL08 |
Exponent in a power law fit (Eg) |
2048*g |
315 |
15 |
32/1 |
Exponent in a power law fit (Eg) |
2048*g |
316 |
16 |
1/10 |
Exponent in a power law fit (Eg) |
2048*g |
317 |
17 |
10/11 |
Exponent in a power law fit (Eg) |
2048*g |
318 |
18 |
16/23 |
Exponent in a power law fit (Eg) |
2048*g |
319 |
19 |
AL01/AL02 |
Exponent in a power law fit (Eg) |
2048*g |
320 |
20 |
39/33 |
Exponent in a power law fit (Eg) |
2048*g |
321 |
21 |
33/3 |
Exponent in a power law fit (Eg) |
2048*g |
322 |
22 |
3/4 |
Exponent in a power law fit (Eg) |
2048*g |
323 |
23 |
4/12 |
Exponent in a power law fit (Eg) |
2048*g |
324 |
24 |
12/13 |
Exponent in a power law fit (Eg) |
2048*g |
325 |
25 |
17/24 |
Exponent in a power law fit (Eg) |
2048*g |
326 |
26 |
38/35 |
Exponent in a power law fit (Eg) |
2048*g |
327 |
27 |
35/6 |
Exponent in a power law fit (Eg) |
2048*g |
328 |
28 |
6/7 |
Exponent in a power law fit (Eg) |
2048*g |
329 |
29 |
7/15 |
Exponent in a power law fit (Eg) |
2048*g |
330 |
30 |
19/20 |
Exponent in a power law fit (Eg) |
2048*g |
331 |
31 |
36/8 |
Exponent in a power law fit (Eg) |
2048*g |
332 |
32 |
8/9 |
Exponent in a power law fit (Eg) |
2048*g |
333 |
33 |
9/43 |
Exponent in a power law fit (Eg) |
2048*g |
334 |
34 |
21/22 |
Exponent in a power law fit (Eg) |
2048*g |
335 |
35 |
Pd09/Pd10 |
LOG10 RATIO |
2048*g |
336 |
36 |
Pd10/Pd11 |
LOG10 RATIO |
2048*g |
337 |
37 |
PAB12/PAB13 |
LOG10 RATIO |
2048*g |
338 |
38 |
Pd’09/Pd’10 |
LOG10 RATIO |
2048*g |
339 |
39 |
Pd’10/Pd’11 |
LOG10 RATIO |
2048*g |
340 |
40 |
Ad02/Ad04 |
LOG10 RATIO |
2048*g |
341 |
41 |
Ad’03/Ad’04 |
LOG10 RATIO |
2048*g |
342 |
42 |
SA2/SB2 |
LOG10 RATIO |
2048*g |
343-350 |
SPARES |
|
|
|
List of contents of ICOMPR(30)
Offset |
Index |
Item |
Description |
Units |
351 |
1 |
PL03/39 |
P/ALPHA RATIO .075 TO .150 |
64*Ratio (Dimensionless) |
352 |
2 |
(PL04+PL05)/33 |
P/APLHA RATIO .150 TO .430 |
64*Ratio (Dimensionless) |
353 |
3 |
(PL06+PL07)/3 |
P/ALPHA RATIO .390 TO 1.5 |
64*Ratio (Dimensionless) |
354 |
4 |
1/3 |
P/ALPHA RATIO .48 TO 1.5 |
64*Ratio (Dimensionless) |
355 |
5 |
10/12 |
P/ALPHA RATIO 4.2 TO 8.9 |
64*Ratio (Dimensionless) |
356 |
6 |
11/13 |
P/ALPHA RATIO 8.9 TO 21.0 |
64*Ratio (Dimensionless) |
357 |
7 |
PL07/AL01 |
P/ALPHA RATIO 1.0 TO 1.8 |
64*Ratio (Dimensionless) |
358 |
8 |
PL08/ 4 |
P/ALPHA RATIO 1.5 TO 3.7 |
64*Ratio (Dimensionless) |
359 |
9 |
16/17 |
P/ALPHA RATIO 3.0 TO 21.0 |
64*Ratio (Dimensionless) |
360 |
10 |
23/24 |
P/ALPHA RATIO 21.0 TO 31.0 |
64*Ratio (Dimensionless) |
361 |
11 |
27/28 |
P/ALPHA RATIO 31.0 TO 64.0 |
64*Ratio (Dimensionless) |
362 |
12 |
39/38 |
ALPHA/MEDIUM 0.047 TO 0.125 |
64*Ratio (Dimensionless) |
363 |
13 |
33/35 |
ALPHA/MEDIUM 0.125 TO 0.260 |
64*Ratio (Dimensionless) |
364 |
14 |
(3+4)/6 |
ALPHA/MEDIUM 0.440 TO 2.90 |
64*Ratio (Dimensionless) |
365 |
15 |
12/7 |
ALPHA/MEDIUM 2.90 TO 7.80 |
64*Ratio (Dimensionless) |
366 |
16 |
13/15 |
ALPHA/MEDIUM 7.80 TO 40.0 |
64*Ratio (Dimensionless) |
367 |
17 |
17/19 |
ALPHA/MEDIUM 6.30 TO 10.0 |
64*Ratio (Dimensionless) |
368 |
18 |
(24+28)/(20+25) |
ALPHA/MEDIUM 10.0 TO 64.0 |
64*Ratio (Dimensionless) |
369 |
19 |
D1F1/D1F2 |
ALPHA/MEDIUM 0.130 TO 10.0 |
64*Ratio (Dimensionless) |
370 |
20 |
38/36 |
MEDIUM/HEAVY 0.062 TO 0.105 |
64*Ratio (Dimensionless) |
371 |
21 |
6/8 |
MEDIUM/HEAVY 0.250 TO 2.00 |
64*Ratio (Dimensionless) |
372 |
22 |
7/9 |
MEDIUM/HEAVY 2.00 TO 13.0 |
64*Ratio (Dimensionless) |
373 |
23 |
15/43 |
MEDIUM/HEAVY 13.0 TO 74.0 |
64*Ratio (Dimensionless) |
374 |
24 |
(19+20+25)/(21+22) |
MEDIUM/HEAVY 8.60 TO 86.0 |
64*Ratio (Dimensionless) |
375 |
25 |
P d 09/A d 03 |
PROTON/ALPHA,RAW C.R. RATIO |
64*Ratio (Dimensionless) |
376 |
26 |
P d 10/A d 04 |
PROTON/ALPHA,RAW C.R. RATIO |
64*Ratio (Dimensionless) |
377 |
27 |
A d 04/Z d 01 |
ALPHA/MEDIUM,RAW C.R. RATIO |
64*Ratio (Dimensionless) |
378 |
28 |
P d‘ 09/A d‘ 03 |
PROTON/ALPHA,RAW C.R. RATIO |
64*Ratio (Dimensionless) |
379 |
29 |
P d‘ 10/A d‘ 04 |
PROTON/ALPHA,RAW C.R. RATIO |
64*Ratio (Dimensionless) |
380 |
30 |
A d‘ 04/ Z d‘ 01 |
ALPHA/MEDIUM,RAW C.R. RATIO |
64*Ratio (Dimensionless) |
Offset |
Index |
Item |
Description |
Units |
381 |
1 |
(10+11)/16 |
FRONT/BACK RATIO PROTONS 3.0 TO 19.0 |
512 * Ratio (Dimensionless) |
382 |
2 |
(12+13)/17 |
FRONT/BACK RATIO ALPHAS 3.0 TO 21.0 |
512 * Ratio (Dimensionless) |
383 |
3 |
15/(19+20) |
FRONT/BACK RATIO MEDIUMS 6.3 TO 42.0 |
512 * Ratio (Dimensionless) |
384 |
4 |
43/(21+22) |
FRONT/BACK RATIO HEAVIES 8.6 TO 86.0 |
512 * Ratio (Dimensionless) |
385 |
5 |
Eb1/Eb’1 |
POLAR/EQUATOR ELECTRONS |
512 * Ratio (Dimensionless) |
386 |
6 |
Eb2/Eb’2 |
POLAR/EQUATOR ELECTRONS |
512 * Ratio (Dimensionless) |
387 |
7 |
Eb3/Eb’3 |
POLAR/EQUATOR ELECTRONS |
512 * Ratio (Dimensionless) |
388 |
8 |
Eb4/Eb’4 |
POLAR/EQUATOR ELECTRONS |
512 * Ratio (Dimensionless) |
389 |
9 |
Eb5/Eb’5 |
POLAR/EQUATOR ELECTRONS |
512 * Ratio (Dimensionless) |
390 |
10 |
Pd 09/Pd‘09 |
EQUATOR/POLAR IONS |
512 * Ratio (Dimensionless) |
391 |
11 |
Pd 10/Pd‘10 |
EQUATOR/POLAR IONS |
512 * Ratio (Dimensionless) |
392 |
12 |
Pd 11/Pd‘11 |
EQUATOR/POLAR IONS |
512 * Ratio (Dimensionless) |
393 |
13 |
Ad 03/Ad 03 |
EQUATOR/POLAR ALPHAS |
512 * Ratio (Dimensionless) |
394 |
14 |
Ad 04/Ad‘04 |
EQUATOR/POLAR ALPHAS |
512 * Ratio (Dimensionless) |
395 |
15 |
Zd 01/Zd‘01 |
EQUATOR/POLAR MEIUMS |
512 * Ratio (Dimensionless) |
396-400 |
SPARES |
|
|
|
Uncertainty Arrays for IGAM(50),ICOMPR(30),IANGR(20)
Offset |
Index |
Item |
Description |
Units |
401-500 |
1-100 |
|
UNCS.FOR ITEMS 301-400 ABOVE |
64 * percent |
Offset | Index | Description | Units |
501-600 |
IGFLX(1) Thru IGFLX(100) | AN ARRAY CONTAINING THE VALUES OF GAMMA USED IN CORRECTING THE COUNT RATES FOR THE FINITE PASSBAND WIDTHS IN THE DERIVATION OF THE DIFFERENTIAL FLUXES. THESE MAY BE ACTUAL OR DEFAULT VALUES, DEPENDING ON THE OUTCOME OF THE ATTEMPT TO DERIVE AN ESTIMATE FROM THE COUNT RATE RATIOS. | 2048*g. |
Offset | Index | Description | Units |
601-700 |
ICFACT(1)
Thru
| COMPOSITION CORRECTION FACTORS FOR RATE CHANNELS 1-100. THESE ARE THE NUMERICAL FACTORS BY WHICH THE COUNT RATE WAS MULTIPLIED TO CORRECT IT FOR CONTAMINATION BY EXTRA SPECIES. THIS IS A NUMBER BETWEEN 0. AND 1.0 | 1024*FACTOR |
Offset | Index | Description | Units |
701-800 |
FLUX(I)
| FLUXES CORRESPONDING TO ITEMS 1-100 ABOVE DIFFERENTIAL FLUXES EVALUATED AT STANDARD VALUES OF THE ENERGY AND CORRECTED FOR FINITE PASSBAND WIDTHS AND CONTAMINATION BY UNDESIRED SPECIES | Particles/(cm2 sec sr MeV) |
Offset | Index | Statistical Uncertainties in Fluxes | Units |
801-900 |
IUFLUX(I) | FLUX UNCS | 64 * Percent |
901-1000 |
ISTP(I,1) |
100 I*2 WORDS WHICH GIVE THE NUMBER OF MOTOR POSITIONS INCLUDED IN THE AVERAGE--USUALLY =1 FOR UNMIXED DATA. |
1001-1100 |
ISTP(I,2) |
100 I*2 WORDS WHICH GIVE THE STARTING POSITION OF THIS AVERAGE.IHED(15) GIVES THE ENDING POSITION OF THE MOTOR FOR THIS RECORD |
Return to Voyager LECP Data Analysis Handbook Table of
Contents.
Return to Fundamental Technologies Home Page.
Last modified 8/9/05, Tizby Hunt-Ward
tizby@ftecs.com